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The problem of capillary-gravity waves generated by certain moving oscillatory 
surface-pressure distributions is investigated. The main difficulty of the problem lies 
in finding the real roots of the modified frequency equations. This is dealt with by 
the use of certain geometric considerations. The critical condition that results from 
the formation of double roots of the modified frequency equations is represented as 
a surface. This surface divides the whole space into several distinct regions. For points 
in different regions the propagation of waves is different. The waves are determined 
in all cases. 

1. Introduction 
The two-dimensional problem of water waves generated by a moving oscillatory 

pressure distribution has been investigated in many papers. Thus the problem 
without surface tension has been studied by Kaplan (1957) in a fluid of infinite depth, 
and by Debnath & Rosenblat (1969) in a fluid with finite uniform depth. The problem 
with infinite depth has been reinvestigated in greater detail by Magnuson (1977). The 
problem with surface tension has been investigated by Pramanik (1980) in a fluid of 
infinite depth. The aim of the present paper is to study the problem with surface 
tension in a fluid with finite uniform depth. 

The main difficulty of the problem lies in finding out the real roots of certain 
characteristic equations called the modified frequency equations, and upon these 
roots the resulting wave pattern crucially depends. Pramanik (1980) has shown how 
with the help of geometrical considerations the complete set of roots of the frequency 
equations can be determined and their effects on the resulting waves can be 
ascertained. 

When the depth of the fluid is infinite there exist two dimensionless parameters 
that  characterize the wave pattern. Supposing w to  be the frequency of oscillation, 
V the uniform velocity of the pressure distribution, T the surface tension and p the 
density of the fluid, the two parameters are a = V o / g  and /? = V/(Tg)! ,  where 
T = T’/p. The critical case that occurs when two roots of the frequency equations 
coalesce can be represented by a curve in the (a,/?)-plane; this curve divides the 
positive quadrant of the (a, /?)-plane into several distinct regions such that for points 
(a, /I) in various regions the propagation of waves is different. 

Now when the depth of the fluid is finite, there are three dimensionless parameters 
a = Vo/g,  b = V/(gh) i  and c = T / h Z g ,  where h is the depth, and the critical condition 
is a surface f(a, b ,  c) = 0. It is easy to understand by analogy with the infinite-depth 
case that this critical surface will divide the positive quadrant of the (a,  b,  c)-space 
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into several distinct regions, and for points (a ,  b,  c) in different regions the propagation 
of waves is different. But the complete determination of these regions is rather a 
difficult task. However, it  is found that the intersecting curves of the critical surface 
by the plane c = constant have only two forms. For 0 < c < this intersecting curve 
divides the plane of the curve into five distinct regions, in each of which the set of 
roots of the frequency equations is different, while for any c 2 5 the corresponding 
curve divides the plane into two such regions. I n  the former case the wave pattern 
is similar to the infinite-depth case. In  the ultimate steady state there exist six waves: 
four gravity waves and two capillary waves. Among them, three gravity waves 
propagate in the downstream direction and one gravity wave exists in the upstream 
side, while both the capillary waves exist in the upstream side. In  the latter case the 
total number of waves is four: two gravity waves in the downstream side and two 
capillary waves in the upstream side. The solution becomes singular for (a ,  6, c) on 
the critical surfaces. 

The case w = 0 is considered. The corresponding problem of gravity waves was 
considered by Stoker (1957), who found that the steady state consists of a wave in 
the downstream direction and that the critical case is b = 1 .  It is found here that the 
surface tension, as well as modifying the critical case, introduces one wave in the 
upstream side. 

We have formulated the problem as a linearized initial-value problem and have 
solved it by Fourier-transform and asymptotic methods. Some of the result8 could 
be obtained through a kinematic approach using the concept of group velocity as 
described by Whitham (1974). But, as remarked by Whitham, the full description 
of the wave pattern can be achieved only through applying the transform method 
to the full set of equations. Also, we prefer the initial-value formulation because by 
this we obtain the singular behaviour of the waves on the critical surface. 

Though we have used the travelling oscillatory surface-pressure distribution as the 
wave-generating mechanism, it is clear that any travelling oscillatory disturbance 
would produce a similar wave pattern and could be determined following our 
approach. 

2. Formulation 
We take a moving coordinate system Oxy such that Oy is vertically upwards, and 

with the origin located on the undisturbed free surface and moving with uniform 
velocity V along the positive direction of the x-axis. The system being initially a t  
rest, the waves are generated by the continued application of the pressure distribution 
f ( x )  exp ( i d ) ,  which a t  the same time moves with velocity V .  Let '(x, y, t )  be the 
velocity potential and q(x,  t )  the surface elevation. Then we have the following 
initial-value problem : 

q5xx+$yy = 0 for -CO < x < CO, -h  < y < 0, t 2 0, ( 1 )  

(2) 
at y = 0, I (3) 

7 t -  v7x = 'y3 

1 
#t - V+z + gq + -f(x) eiot = Tq,, 

P 

-- "'-0 a t  y = - h ,  
aY (4) 
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The formal solution of the problem is obtained by Fourier-transforming the above 
system of equations with respect to x and then using the Fourier inversion formula. 
The following integral representation for r,~ can easily be obtained : 

3. Steady-state waves 
We shall determine the asymptotic values of the integrals for large times at a large 

distance from the pressure segment. These asymptotic values appear as contributions 
in the form of residues a t  the real poles of the integrands in (6). These poles are the 
solutions of the following three equations : 

We shall determine these roots for given values of the parameters T ,  V ,  g and h. The 
roots will be determined as points of intersection of the curve m = cr and the straight 
lines m = K V + W ,  m = K V - w  and m = - K V + W .  It is easy to see that for 0 < c < 5 
the curve m = cr has a point of inflexion at some point K = K~ > 0, say, and that 
d2a/dK2 changes sign from negative to positive as K increases through K ~ .  So in this 
case the curve has the shape shown in figures 1 and 2. When, however, c 2 f there 
is no point of inflexion, and d2cr/dK2 > 0 for all K .  So the curve here is as shown in 
figure 5 .  Since the roots of (7)-(9) and hence the resulting wave pattern depend 
crucially upon the shape of the curve, we divide our subsequent discussion into two 
parts, for 0 < c < g and for c 2 5. 

3.1. Steady waves for 0 < c < f 
It can be seen from figure 1 that (7)  can have a maximum of three distinct real positive 
roots, K = al, a2, u3, say, and from figure 2 that (8) can have two such roots, K = a4, 
as. It is also easy to understand that (9) always has one positive root, K = a,. T o  
determine the exact set of roots for given values of the parameters, we consider the 
cases of repeated roots. It can be seen from figures 1 and 2 that there can be three 
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FIGURE 1 .  The roots of (7) for c < 4. 

FIGURE 2. The roots of (8) for c < i. 

such cases: a1 = a2, u2 = a3, and a4 = a6. The precise conditions for the occurrence 
of these cases can be written respectively as 

where IT’ denotes the derivative of CT with respect to K,  and K~ is the value of K for 
which the straight line m = K V  is a tangent to m = IT. Now we write K h  = h and 
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introduce the following three dimensionless parameters : 

a = (  

4( 1 + h2c) tanh h 

for O < h  < A ,  and A, < A  <A, ,  (14) 

[A(  1 +A%) sech2 h - (1  - A2c) tanh A] [( 1 + 3h2c) tanh h + A( 1 + h2c) sech2 A] 
4( 1 +A%)  tanh h 

for A, < A  < co, 

(1  + 3A2c) tanh h + A( 1 + h2c) sech2 h 
2[h( 1 + h2c) tanh A]? 

b =  for O<h<co .  

I n  the above expressions A, and A, are the values of h corresponding to K = K, and 
K = K,, and they respectively satisfy the following equations: 

3h2( 1 + h2c) tanh4 h - 2 4  1 + h2c) (1  + 3A2c) tanh3 h 

+ [12h2c( 1 + h2c) - 2h2( 1 + - (1  + 3A2c)] tanh2 h 

+ 2h( 1 + h2c) (1  + 3h2c) tanh h - A 2 (  1 + h 2 ~ ) 2  = 0, (16) 

(17) 

Now (14) and (15) represent in the parametric form a surface called the critical 
surface f(a, b, c )  = 0 in the (a, b, c)-space. The intersecting curve of this surface by the 
plane c = constant can be drawn for certain values of c. For c = 0.01 this curve is 
shown in figure 3. The point A,  corresponds to A = A, and the point A ,  to h = A,. 
The curvilinear portions c,, c2 and cg, extending respectively from the point A to  A,, 
from A,  to  A,  and from A,  to  B (the point a t  infinity), represent the cases a,  = u2, 
a2 = a3 and a4 = a5 respectively. Now these critical curves and the straight line OA, 
divide the whole positive quadrant of the plane of the curve into seven distinct regions 
R, (n = 1 ,  ..., 7) as shown in figure 3. I n  each of these regions there corresponds a 
definite subset of the roots a, in the sense that the values of the parameters V ,  w ,  
g, T and h which determine these regions also fix the roots. The roots corresponding 
to each region can be determined in the following way. 

For a fixed value of w ,  as we increase Vfrom zero, in the (a, b)-plane the point (a, b )  
moves along a straight line through the origin and with constant gradient wh:/gi, 
while in the (m, K)-plane the straight line m = KV+W rotates about a fixed point on 
the m-axis. The straight line OA, has the gradient w, hi/gi, where B(K,)  = 0,. For a 
fixed value of w < w,, as V increases, the point (a, b) intersects all the curves c,, c2 
and cg, while for w > w, only c3 is intersected. The corresponding situation in the 
(m, K)-plane is easily understood. For w > w,, the straight line m = K V + W  is never 
tangent to the curve m = u, while €or any fixed w < w, i t  becomes tangent to m = u 
for two values of V.  Similarly, for each value of o the straight line m = KV--W is 
tangent to  m = B for one value of V.  We now turn our attention to the roots of (7). 
For a fixed w < w,, as we increase V from zero, in the (a, b)-plane we first meet c2 

(1-h2c)  tanhh-h(1+A2c) sech2h = 0. 
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b 

FIQURE 3. The section of the critical surface for c = 0.01. 

and then c, .  That is, in the (m, K)-plane as the straight line m = K V + w is rotated about 
a point on the m-axis below w, from a position in which it is parallel to the K-axis, 
the straight line at first remains in a position in which it intersects m = CT at one point 
K = al, then it comes to a position in which it is tangent to the curve such that a3 = a2 
occurs, and thereafter i t  is in a position in which all three roots al, a2 and a3 exist 
up to the position a t  which it again becomes tangent such that a1 = u2 occurs, and 
then only K = a3 exists. Thus for points (a,  b )  in the regions to the left of c2 only u1 
exists, in the regions to the left of c1 but to the right of c2 all three roots aI, a2 and u3 
exist, and in the regions to the right of c1 only a3 exists. In a similar way it can easily 
be verified that the roots a, and a, of (8) exist only for points (a ,  b )  to the right of 
c3. Thus we arrive a t  the following distributions of roots: 

Rl R, R3 R4 R5 R6 R7 

u1,a6 a 1 , ~ 2  a1,aZ,a3 u3,a4 u3,a6 a3,a6 a3,a4 

We note that the roots in the regions R, and R,, and also in R, and R,, are identical. 
Thus the straight line OA, is effective up to the point A,, and there are only five 
distinct regions. 

Once the poles are located, the asymptotic values of the integrals can be determined 
by a method developed by Lighthill (1958). The behaviour of the asymptotic waves 
for (a ,  b )  in any of the regions where the poles are distinct, as well as for (a ,  b)  on the 
critical curves where some poles are double, can be determined by this method. As 
an illustration we consider the integral 

u3 ,  “6  &4> a5j a6 0159 016 a5’ 016 
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FIQURE 4. The form of the curve defined in (19). 

This is to be evaluated for t + co. Let us a t  first suppose that (a,  b)  is within the region 
R,, so that the poles a,, a2 and a, are all distinct. A suitable transformation for this 

(19) 
case is 

m = m(K) = CT-KV. 

A sketch of the curve of the transformation is shown in figure 4. The poles a,, a2 
and a, are the points of intersection of the curve rn = u - K V and the straight line 
m = w .  The points K = uo and K = ah are the solutions of the equation u' = V. The 
curve m = ~ - K V  may have other forms. But it can be proved that in the case under 
consideration uo and ah always exist and m(uo) > m(uh). Now to calculate the 
asymptotic value of I as t+ co we break it up as follows: 

I =  ( joao + ja: + J:) [ 'f( -K)  e-iKs ] e i ( U - K v )  t dK 
u(u- K V-w) 

(20) 
K i (  - K )  e-iKz -]-dm, dK eimt 

dm m-w 

where the quantity within the square bracket is to be expressed in terms of m by 
(19). Now each of the integrals in (20) contains one pole. Hence the formula referred 
to above gives the following asymptotic value for t + co : 

When (a ,  b )  is either on the curve c, or on the curve c2,  two of the roots coincide. 
Let us calculate the integral for (a,  b) on c,. Here a, = a2 = a, and a, is distinct. We 
break up the integral as follows: 

where 0 < E 6 1. 

FLM 145 14 
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The first and the fourth integrals, having no poles, will not contribute to the 
asymptotic value, and the contribution of the last integral from the distinct pole 
K = a, can be calculated as above. To calculate the second and the third integrals 
we make the substitution 

Now near K = a. we can write 

Also we get 

m = K V - C r - k U .  (22 )  

m = - + ( K - ~ , ) ~ C T ” ( ~ , ) .  

dm 
~ = 12ma”(ao)(i sgn (tc-aO). 
d K  

Substituting all these, the combination of the second and the third integrals in (21) 
reduces to  

where el is a positive quantity. 
.The asymptotic value of the integral in (23) remains unchanged if the upper limit 

is replaced by co , and hence by Lighthill’s formula the asymptotic value is given by 

It is thus seen that the asymptotic value of I becomes infinitely large for (a ,  b )  on 
cl. In  a similar way, i t  can be proved that for (a ,  b )  on any of the critical curves some 
of the integrals in ?I(”, t )  have infinitely large values. Thus the solution for q(z, t )  
becomes singular for (a ,  b )  on the critical curves. 

We now turn our attention to the case when (a ,  b )  is outside the critical curves, 
where the asymptotic solution is a system of steady waves. For (a ,  b )  within R,, the 
system of waves is as follows: 

27TiK 27TiK 
F(K) = q ( K )  = _ _ ~  

a(Cr’+ V )  ’ cT(a’- V )  ’ 

It is convenient to refer to  a wave that comes as a contribution from the pole a, 
as an a, wave. It is thus seen that when the point (a ,  b )  is in R, there exist six 
waves. Among these the al, a,, a4 and a, waves are the gravity waves and the rest are 
the capillary waves. Three gravity waves exist in the downstream and one in the 
upstream side, while both the capillary waves exist in tJhe upstream side. It is shown 
by Whitham (1974), using the concept of group velocity, that  in a moving medium 
the capillary waves always exist ahead of the disturbance, which agrees with our 
findings. The waves for the points (a ,  b )  in other regions are easy to determine. They 
are simply the waves expressed in (25) ,  only with the wave coming from a pole not 
occurring in a region being deleted from that  region. 
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FIGURE 5. The roots of (7) and (8) for c 2 :. 

b 
FIGURE 6. The section of the critical surface for c = 1. 

3.2. Steady waves for c 2 + 
It is evident from figure 5 that the roots of the frequency equations in the present 
case are as, u4, a5 and a6. And a4 and a5 may coincide to give rise to the critical case 
which is represented as follows : 

14-2 
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This, with the help of transformation (13), is a t  once written down as 

a =  

A .  K .  Pramanik and S .  R .  Majumdar 

[A(  1 + h2c) sech2 h - (1  - h2c) tanh A] [( 1 + 3h2c) tanh h +A(  1 + h2c) sech2 A ] ,  
4( 1 +A%) tanh h 

(1  + 3h2c) tanh h + A( 1 +A%) sech2 h 
2[h( 1 +A%) tanh A]; 

b =  

for 0 < h < CO. The intersecting curve of this critical surface is drawn for c = 1 in 
figure 6. This curve C divides the corresponding plane into two regions. It is easy to 
verify that for points (a ,  b )  to the right of the curve all the roots as, a4, a5 and ag 
exist, while for points (a ,  b )  to the left of the curve only a3 and 01, exist. The steady-state 
value of 7 for points (a ,  b )  to the right of the C is then given by 

For points (a,  b)  to the left of the curve only the at and a, waves exist. Thus in this 
case, out of the four gravity waves only two exist, while both the capillary waves 
exist. The condition c 3 implies very shallow depth. For water this means that the 
depth is less than 0.5 cm. We see thus that in shallow water the capillary forces are 
more effective than the gravity forces. 

4. Discussions 
Though our discussions in 33 are based on two particular values of the parameter 

c, the results are valid in general. The qualitative nature of the solutions remains the 
same for any other values of c in the two ranges (0,i) and (g, LO). For any other value 
of c in the range (0,g) only the points A, and A ,  on the critical curves will change 
positions. For values of c very near to zero, the point A,  will be very near to the origin, 
and as c increases from zero the point A ,  moves along the b-axis towards the point 
A ,  and coincides with A as c+$, so that the region bounded by the curves el, c2 and 
the b-axis ultimately vanishes and we get the critical curve as in figure 6. All these 
statements are easily verified if we consider the section of the critical surface 
f ( a ,  b,  c) = 0 by the plane a = 0. The equation for this critical curve in the (b ,  c)-plane 
is obtained from the general equations (14) and (15). It can be seen from (14) that 
a = 0 is satisfied when h = 0 for all values of c or when 

( 1 - A 2 c )  tanhh-h(1+h2e) sech2h = 0. 

This, with the help of (15), gives the following representation of the critical case for 
a = 0; 

and 
b = 1 

4 2  tanh A 
[h(tanh h + h sech2 A]? 

tanh h - h sech2 h 
A2(tanh h + A  sech2 A )  

This is represented in figure 7 ,  which evidently confirms our above 

for all c, 

for O < h  < 00. 1 b =  

c =  
(28)  

statements. 
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b 

FIGURE 7. The section of the critical surface for a = 0. 

Now we wish to consider the case w = 0. The relevant frequency equation is v = K V.  
It is easy to see that it always has the root zero and a maximum of two non-zero 
roots a and /3 (a < p),  say. The critical condition for the present case has already been 
represented in figure 7 .  Then the following statements regarding the steady-state 
waves can be easily verified. The a-wave, which is the original gravity wave, exists 
in the downstream side, while the p-wave, which is the capillary wave, exists in the 
upstream side. For points (b ,  c)  in R; both the waves exist, for (b ,  c )  lying in Ri only 
the p-wave exists, while for points (b,  c) in RL none of the waves propagates. 
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